The strong geometric lemma for intrinsic Lipschitz graphs in Heisenberg groups

Author:

Chousionis Vasileios1,Li Sean1,Young Robert2ORCID

Affiliation:

1. Department of Mathematics , University of Connecticut , Connecticut , CT 06269 , USA

2. Courant Institute of Mathematical Sciences , New York University , New York , NY 10012 , USA

Abstract

Abstract We show that the β-numbers of intrinsic Lipschitz graphs of Heisenberg groups n {\mathbb{H}_{n}} are locally Carleson integrable when n 2 {n\geq 2} . Our main bound uses a novel slicing argument to decompose intrinsic Lipschitz graphs into graphs of Lipschitz functions. A key ingredient in our proof is a Euclidean inequality that bounds the β-numbers of the original graph in terms of the β-numbers of many families of slices. This allows us to use recent work of Fässler and Orponen (2020) which asserts that Lipschitz functions satisfy a Dorronsoro inequality.

Funder

National Science Foundation

Simons Foundation

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Function Allocation in Edge Serverless Computing Networks;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

2. Identifying 1-rectifiable measures in Carnot groups;Analysis and Geometry in Metric Spaces;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3