Identifying 1-rectifiable measures in Carnot groups

Author:

Badger Matthew1,Li Sean1,Zimmerman Scott2

Affiliation:

1. Department of Mathematics, University of Connecticut , Storrs , CT 06269-1009 , United States

2. Department of Mathematics, The Ohio State University at Marion , Marion , OH 43302-5695 , United States

Abstract

Abstract We continue to develop a program in geometric measure theory that seeks to identify how measures in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the measure that is singular to rectifiable curves. Our main result is entwined with an extension of analyst’s traveling salesman theorem, which characterizes the subsets of rectifiable curves in R 2 {{\mathbb{R}}}^{2} (P. W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15), in R n {{\mathbb{R}}}^{n} (K. Okikiolu, Characterization of subsets of rectifiable curves in R n {{\bf{R}}}^{n} , J. London Math. Soc. (2) 46 (1992), no. 2, 336–348), or in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called Jones’ β \beta -numbers. In a secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in R n {{\mathbb{R}}}^{n} that charges a rectifiable curve in an arbitrary complete, doubling, locally quasiconvex metric space.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Traveling Salesman Theorem for Jordan Curves in Hilbert Space;Michigan Mathematical Journal;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3