A Sharp Rearrangement Principle in Fourier Space and Symmetry Results for PDEs with Arbitrary Order

Author:

Lenzmann Enno1,Sok Jérémy1

Affiliation:

1. University of Basel, Department of Mathematics and Computer Science, Spiegelgasse 1, CH-4051 Basel, Switzerland

Abstract

Abstract We prove sharp inequalities for the symmetric-decreasing rearrangement in Fourier space of functions in $\mathbb{R}^d$. Our main result can be applied to a general class of (pseudo-)differential operators in $\mathbb{R}^d$ of arbitrary order with radial Fourier multipliers. For example, we can take any positive power of the Laplacian $(-\Delta )^s$ with $s> 0$ and, in particular, any polyharmonic operator $(-\Delta )^m$ with integer $m \geqslant 1$. As applications, we prove radial symmetry and real-valuedness (up to trivial symmetries) of optimizers for (1) Gagliardo–Nirenberg inequalities with derivatives of arbitrary order, (2) ground states for bi- and polyharmonic nonlinear Schrödinger equations (NLS), and (3) Adams–Moser–Trudinger type inequalities for $H^{d/2}(\mathbb{R}^d)$ in any dimension $d \geqslant 1$. As a technical key result, we solve a phase retrieval problem for the Fourier transform in $\mathbb{R}^d$. To achieve this, we classify the case of equality in the corresponding Hardy–Littlewood majorant problem for the Fourier transform in $\mathbb{R}^d$.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference42 articles.

1. Symmetric decreasing rearrangement is sometimes continuous;Almgren;J. Amer. Math. Soc.,1989

2. Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems;Bellazzini;Math. Ann.,2014

3. Majorant problems for trigonometric series;Boas;J. Anal. Math.,1962/1963

4. Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime;Bonheure,2018

5. Waveguide Solutions for a Nonlinear Schrödinger Equation with Mixed Dispersion;Bonheure,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation;Nonlinearity;2024-06-19

2. The endpoint Stein–Tomas inequality: old and new;São Paulo Journal of Mathematical Sciences;2024-04-22

3. Block-radial symmetry breaking for ground states of biharmonic NLS;Calculus of Variations and Partial Differential Equations;2024-01-28

4. Symmetric Stein–Tomas, and Why Do We Care?;Trends in Mathematics;2024

5. Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates;Journal d'Analyse Mathématique;2023-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3