Abstract
AbstractWe prove that the biharmonic NLS equation $$\begin{aligned} \Delta ^2 u +2\Delta u+(1+\varepsilon )u=|u|^{p-2}u\,\,\, in {\mathbb {R}}^d \end{aligned}$$
Δ
2
u
+
2
Δ
u
+
(
1
+
ε
)
u
=
|
u
|
p
-
2
u
i
n
R
d
has at least $$k+1$$
k
+
1
geometrically distinct solutions if $$\varepsilon >0$$
ε
>
0
is small enough and $$2<p<2_\star ^k$$
2
<
p
<
2
⋆
k
, where $$2_\star ^k$$
2
⋆
k
is an explicit critical exponent arising from the Fourier restriction theory of $$O(d-k)\times O(k)$$
O
(
d
-
k
)
×
O
(
k
)
-symmetric functions. This extends the recent symmetry breaking result of Lenzmann–Weth (Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates, 2023) and relies on a chain of strict inequalities for the corresponding Rayleigh quotients associated with distinct values of k. We further prove that, as $$\varepsilon \rightarrow 0^+$$
ε
→
0
+
, the Fourier transform of each ground state concentrates near the unit sphere and becomes rough in the scale of Sobolev spaces.
Funder
Fundación Banco Santander
Universidade de Lisboa
Publisher
Springer Science and Business Media LLC
Reference15 articles.
1. Bergh, J., Löfström, J.: Interpolation Spaces: An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)
2. Bugiera, L., Lenzmann, E., Schikorra, A., Sok, J.: On symmetry of traveling solitary waves for dispersion generalized NLS. Nonlinearity 33(6), 2797–2819 (2020)
3. Cho, Y., Guo, Z., Lee, S.: A Sobolev estimate for the adjoint restriction operator. Math. Ann. 362(3–4), 799–815 (2015)
4. De Nápoli, P.L.: Symmetry breaking for an elliptic equation involving the fractional Laplacian. Differ. Integral Equ. 31(1–2), 75–94 (2018)
5. Grafakos, L.: Classical Fourier Analysis. Third edition. Graduate Texts in Mathematics, 249. Springer, New York (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献