Twist Automorphisms on Quantum Unipotent Cells and Dual Canonical Bases

Author:

Kimura Yoshiyuki1,Oya Hironori2

Affiliation:

1. Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka, Japan

2. Department of Mathematical Sciences, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama, Japan

Abstract

Abstract In this paper, we construct twist automorphisms on quantum unipotent cells, which are quantum analogues of the Berenstein–Fomin–Zelevinsky twist automorphisms on unipotent cells. We show that those quantum twist automorphisms preserve the dual canonical bases of quantum unipotent cells. Moreover, we prove that quantum twist automorphisms are described by the syzygy functors for representations of preprojective algebras in the symmetric case. This is the quantum analogue of Geiß–Leclerc–Schröer’s description, and Geiß–Leclerc–Schröer’s results are essential in our proof. As a consequence, we show that quantum twist automorphisms are compatible with quantum cluster monomials. The 6-periodicity of specific quantum twist automorphisms is also verified.

Funder

Japan Society for the Promotion of Science

JSPS Grant-in-Aid for Young Scientists

Grant-in-Aid for JSPS Fellows

European Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference56 articles.

1. DTr-periodic modules and functors;Auslander,1996

2. An algebraic characterization of the affine canonical basis;Beck;Duke Math. J.,1999

3. Parametrizations of canonical bases and totally positive matrices;Berenstein;Adv. Math.,1996

4. Cluster algebras. III. Upper bounds and double Bruhat cells;Berenstein;Duke Math. J.,2005

5. Quantum cluster characters of Hall algebras;Berenstein;Selecta Math. (N.S.),2015

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localizations for quiver Hecke algebras III;Mathematische Annalen;2024-05-03

2. Surface quasi-geostrophic equation perturbed by derivatives of space-time white noise;Mathematische Annalen;2024-05-03

3. Quasi-homomorphisms of quantum cluster algebras;Journal of Algebra;2024-01

4. Twist Automorphisms and Poisson Structures;Symmetry, Integrability and Geometry: Methods and Applications;2023-12-23

5. Wilson lines and their Laurent positivity;Mathematische Zeitschrift;2023-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3