Wilson lines and their Laurent positivity

Author:

Ishibashi TsukasaORCID,Oya HironoriORCID

Abstract

AbstractFor a marked surface $$\Sigma $$ Σ and a semisimple algebraic group G of adjoint type, we study the Wilson line morphism $$g_{[c]}:{\mathcal {P} }_{G,\Sigma } \rightarrow G$$ g [ c ] : P G , Σ G associated with the homotopy class of an arc c connecting boundary intervals of $$\Sigma $$ Σ , which is the comparison element of pinnings via parallel-transport. The matrix coefficients of the Wilson lines give a generating set of the function algebra $$\mathcal {O}({\mathcal {P} }_{G,\Sigma })$$ O ( P G , Σ ) when $$\Sigma $$ Σ has no punctures. The Wilson lines have the multiplicative nature with respect to the gluing morphisms introduced by Goncharov–Shen [18], hence can be decomposed into triangular pieces with respect to a given ideal triangulation of $$\Sigma $$ Σ . We show that the matrix coefficients $$c_{f,v}^V(g_{[c]})$$ c f , v V ( g [ c ] ) give Laurent polynomials with positive integral coefficients in the Goncharov–Shen coordinate system associated with any decorated triangulation of $$\Sigma $$ Σ , for suitable f and v.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference42 articles.

1. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72(1), 128–166 (1997)

2. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122(1), 49–149 (1996)

3. Brion, M.: Introduction to actions of algebraic groups, http://www-fourier.ujf-grenoble.fr/~mbrion/notes_luminy.pdf

4. Chekhov, L.O., Shapiro, M.: Darboux coordinates for symplectic groupoid and cluster algebras, arXiv:2003.07499

5. Douglas, D.: Points of quantum $$SL_n$$ coming from quantum snakes, arXiv:2103.04471

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3