Local effects of global climate on a small rodent Necromys lasiurus

Author:

Magnusson William1,Rosa Clarissa1,Layme Viviane Maria Guedes2ORCID,Ghizoni Ivo Rohling3,Lima Albertina Pimentel1

Affiliation:

1. Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil

2. Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá - MT, Mato Grosso, Brazil

3. Caipora Cooperativa para Conservação da Natureza, Florianópolis, Brazil

Abstract

Abstract Global climate drivers often have strong effects on the carrying capacity of animal populations, but little is known about how effects differ between regional and local scales. In this paper we evaluated how climate variables were correlated with regional and local fluctuations of a small rodent, Necromys lasiurus, in an Amazonian savanna. Between 2000 and 2019, we evaluated the temporal variation in abundance of N. lasiurus in eight 4.0-ha plots separated by 0.8 – 10.6 km. Using generalized linear mixed models, we found that, at a regional scale, the abundance of rodents captured was positively associated with the abundance in the prior year, but had little relationship with the Southern Oscillation Index (SOI), which had been shown to affect rats in a single plot in a previous study. However, variation in densities among years was coordinated among some plots, leading to patchiness in population dynamics. Based on the patterns of density fluctuations, the plots formed three clusters. Analyses based on these clusters indicated that only one was strongly affected by SOI, as in the previous study. The differences in the effects of global climate drivers on populations of a single species in relatively homogeneous habitat indicate that predictions about the effects of climate change should be based on simultaneous studies in a variety of sites or they may lead to spurious relationships.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3