Affiliation:
1. School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA
2. Tall Timbers, 13093 Henry Beadel Drive, Tallahassee, FL 32312, USA
3. Albany Quail Project, 5765 Pigeon Road, Newton, GA 39870, USA
Abstract
Abstract
Efforts to remove invasive species may benefit native species, but the effects can be complex and unpredictable. Thus, studies of invasive-species removal provide important information for guiding management and providing insight about variation in post-removal impacts within the community. Using southern pine-grassland ecosystems as a model system, we hypothesized that removal of the long-established red-imported fire ant (Solenopsis invicta, hereafter RIFA) would positively influence altricial Peromyscus species, due to increased survival of young in the nest and thus increased recruitment to the population, but would not impact semi-precocial hispid cotton rats (Sigmodon hispidus), which are mobile more quickly after birth and thus at less risk of depredation by RIFA. We compared small mammal populations on sites treated with a granular insecticide (Extinguish Plus) to remove RIFA in southwestern Georgia, United States, from April 2018 to December 2019. As expected, we detected no difference in cotton rat recruitment. However, contrary to our prediction, the same was true for cotton mice (Peromyscus gossypinus) and oldfield mice (Peromyscus polionotus). We found RIFA removal increased survival both of cotton rats and cotton mice, increasing average population rate of change (λ) on treated sites during the study period. In contrast, we observed lower survival of oldfield mice, with similar λ estimates on treated and untreated sites, but low sample sizes were problematic for this species. Our results show that removal of invasive species can have positive impacts for native species, but both the magnitude of RIFA effects on small mammals and mechanisms by which impacts occur are complex.
Funder
Tall Timbers Research Station
McCrary Institute at Auburn University
Publisher
Oxford University Press (OUP)
Subject
Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献