Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment

Author:

Robson Kelsey M.1,Lamb Clayton T.1,Russello Michael A.1

Affiliation:

1. Department of Biology, University of British Columbia , Okanagan Campus, 3247 University Way, Kelowna, British Columbia V1V 1V7 , Canada (KMR, CTL, MAR)

Abstract

Abstract In the face of climate change, there is a growing need for research into the ability of organisms to persist at the limits of their bioclimatic envelope. American pikas ( Ochotona princeps ) have emerged as a focal mammalian species for investigating extinction risk related to climate change; however, most studies have occurred in characteristic alpine talus habitat within the range core. In the Columbia River Gorge (CRG), Oregon, American pikas inhabit low-elevation talus slopes previously considered outside the species’ bioclimatic range. We used microsatellite genotypic data to reconstruct levels of genetic variation, population connectivity, and demographic history at 11 CRG sites spanning an elevational gradient (104–1,292 m). Sampled sites separated into 2 genetic clusters largely explained by elevation, topography, and geographic proximity, with pairwise estimates of differentiation and migration rates suggesting little gene flow may be occurring. Sites were characterized by levels of allelic richness and heterozygosity substantially lower than values reported at characteristic alpine sites from the range core. Evidence of recent demographic contraction was found almost exclusively at high-elevation sites despite these areas being considered refuges from climate warming in more typical habitat. Given their unique genetic characteristics and persistence in an atypical environment, the CRG pika populations likely constitute a significant component of intraspecific biodiversity with high conservation value.

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3