Evaluating genotyping‐in‐thousands by sequencing as a genetic monitoring tool for a climate sentinel mammal using non‐invasive and archival samples

Author:

Arpin Kate E.1,Schmidt Danielle A.1,Sjodin Bryson M. F.1,Einfeldt Anthony L.2,Galbreath Kurt3,Russello Michael A.1ORCID

Affiliation:

1. Department of Biology The University of British Columbia Kelowna British Columbia Canada

2. Parks Canada East Kootenay G British Columbia Canada

3. Department of Biology Northern Michigan University Marquette Michigan USA

Abstract

AbstractGenetic tools for wildlife monitoring can provide valuable information on spatiotemporal population trends and connectivity, particularly in systems experiencing rapid environmental change. Multiplexed targeted amplicon sequencing techniques, such as genotyping‐in‐thousands by sequencing (GT‐seq), can provide cost‐effective approaches for collecting genetic data from low‐quality and quantity DNA samples, making them potentially useful for long‐term wildlife monitoring using non‐invasive and archival samples. Here, we developed a GT‐seq panel as a potential monitoring tool for the American pika (Ochotona princeps) and evaluated its performance when applied to traditional, non‐invasive, and archival samples, respectively. Specifically, we optimized a GT‐seq panel (307 single nucleotide polymorphisms (SNPs)) that included neutral, sex‐associated, and putatively adaptive SNPs using contemporary tissue samples (n = 77) from the Northern Rocky Mountains lineage of American pikas. The panel demonstrated high genotyping success (94.7%), low genotyping error (0.001%), and excellent performance identifying individuals, sex, relatedness, and population structure. We subsequently applied the GT‐seq panel to archival tissue (n = 17) and contemporary fecal pellet samples (n = 129) collected within the Canadian Rocky Mountains to evaluate its effectiveness. Although the panel demonstrated high efficacy with archival tissue samples (90.5% genotyping success, 0.0% genotyping error), this was not the case for the fecal pellet samples (79.7% genotyping success, 28.4% genotyping error) likely due to the exceptionally low quality/quantity of recovered DNA using the approaches implemented. Overall, our study reinforced GT‐seq as an effective tool using contemporary and archival tissue samples, providing future opportunities for temporal applications using historical specimens. Our results further highlight the need for additional optimization of sample and genetic data collection techniques prior to broader‐scale implementation of a non‐invasive genetic monitoring tool for American pikas.

Funder

Parks Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3