Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): comparing MaxEnt and occupancy models

Author:

Perkins-Taylor Ian E1ORCID,Frey Jennifer K1ORCID

Affiliation:

1. Department of Fish, Wildlife and Conservation Ecology, New Mexico State University, Las Cruces, NM, USA

Abstract

Abstract Species distribution models (SDMs) use presence records to determine the relationship between species occurrence and various environmental variables to create predictive maps describing the species’ distribution. The Oscura Mountains Colorado chipmunk (Neotamias quadrivittatus oscuraensis) occurs in central New Mexico and is of conservation concern due to its relict distribution and threats to habitat. We previously created an occupancy model for this taxon, but were concerned that the model may not have adequately captured the ecological factors influencing the chipmunk’s distribution because of the data hungry nature of occupancy modeling. MaxEnt is another SDM method that is particularly effective at testing large numbers of variables and handling small sample sizes. Our goal was to create a MaxEnt model for the Oscura Mountains Colorado chipmunk and to compare it with our previous occupancy model for this taxon, either to strengthen our original assessment of the relevant ecological factors or identify additional factors that were not captured by our occupancy model. We created MaxEnt models using occurrence records from baited camera traps and opportunistic surveys. We adjusted model complexity using a novel method for tuning both the regularization multiplier and feature class parameters while also performing variable selection. We compared the distribution maps and variables selected by MaxEnt to the results of our occupancy model for this taxon. The MaxEnt and occupancy models selected similar environmental variables and the overall spatial pattern of occurrence was similar for each model. Likelihood of occurrence was positively related to elevation, piñon woodland vegetation type, and topographic variables associated with escarpments. The overall similarities between the MaxEnt and occupancy models increased our confidence of the ecological factors influencing the distribution of the chipmunk. We conclude that MaxEnt offers advantages for predicting the distribution of rare species, which can help inform conservation actions.

Funder

Conservation Branch, Garrison Environmental Division, White Sands Missile Range

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3