Modeling the suitability of Texas karst regions for infection by Pseudogymnoascus destructans in bats

Author:

Wolf Lilianna K1,Meierhofer Melissa B2ORCID,Morrison Michael L23,Cairns David M4,Lacher Thomas E15ORCID

Affiliation:

1. Department of Ecology and Conservation Biology, Texas A&M University , College Station, TX 77843 , USA

2. Natural Resources Institute, Texas A&M University , College Station, TX 77843 , USA

3. Department of Rangeland, Wildlife, and Fisheries Management, Texas A&M University , College Station, TX 77843 , USA

4. Department of Geography, Texas A&M University , College Station, TX 77843 , USA

5. Re:Wild , Austin, TX 78796 , USA

Abstract

Abstract White-nose syndrome (WNS) is caused by the fungus Pseudogymnoascus destructans and has led to the deaths of millions of North American bats since it was first documented in New York in 2006. Since the first cases were recorded, WNS has spread rapidly across North America and is now confirmed or suspected in 40 US states and seven Canadian provinces. Often, the presence of P. destructans is detected in a cave or hibernaculum before signs of WNS manifest in the resident bat population, making presence of the fungus a more reliable assessment of potential epidemic spread than expansion of manifested WNS. An analysis of 43 cave internal climates across the state of Texas revealed a pattern of thermal suitability for P. destructans that correlated significantly with landscape (elevation, lithology) and external climate (mean surface temperature and precipitation). We generated a predictive model to assess the potential spread of P. destructans through Texas karst systems based on external features that correlate with suitable internal climates for fungal growth. Applications of this model to external climatic variables from 2019 showed seasonally varying patterns of suitability for fungal growth in select regions of Texas karst systems. Results from these surveys and models showed that internal climates of Texas caves are likely able to sustain the growth of P. destructans and could cause disease and resulting declines in Texas bats, and act as stepping-stones for the fungus, allowing it to travel southward into Mexican and Central American cave systems. The resulting work will inform researchers and natural resource managers of areas of significant concern to monitor for the spread of WNS.

Funder

U.S. Fish and Wildlife Service’s State Wildlife Grant Program

Texas Parks and Wildlife Department

U.S. Fish and Wildlife Service

Fight WNS

Texas Ecolab research grants

National Speleological Society WNS Rapid Response Grant and Research Grant

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3