Affiliation:
1. Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
Abstract
Abstract
Localizing hyperexcitable brain tissue to treat focal seizures remains challenging. We want to identify the seizure onset zone from interictal EEG biomarkers. We hypothesize that a combination of interictal EEG biomarkers, including a novel low frequency marker, can predict mesial temporal involvement and can assist in prognosis related to surgical resections. Interictal direct current wide bandwidth invasive EEG recordings from 83 patients implanted with 5111 electrodes were retrospectively studied. Logistic regression was used to classify electrodes and patient outcomes. A feed-forward neural network was implemented to understand putative mechanisms. Interictal infraslow frequency EEG activity was decreased for seizure onset zone electrodes while faster frequencies such as delta (2–4 Hz) and beta-gamma (20–50 Hz) activity were increased. These spectral changes comprised a novel interictal EEG biomarker that was significantly increased for mesial temporal seizure onset zone electrodes compared to non-seizure onset zone electrodes. Interictal EEG biomarkers correctly classified mesial temporal seizure onset zone electrodes with a specificity of 87% and positive predictive value of 80%. These interictal EEG biomarkers also correctly classified patient outcomes after surgical resection with a specificity of 91% and positive predictive value of 87%. Interictal infraslow EEG activity is decreased near the seizure onset zone while higher frequency power is increased, which may suggest distinct underlying physiologic mechanisms. Narrowband interictal EEG power bands provide information about the seizure onset zone and can help predict mesial temporal involvement in seizure onset. Narrowband interictal EEG power bands may be less useful for predictions related to non-mesial temporal electrodes. Together with interictal epileptiform discharges and high-frequency oscillations, these interictal biomarkers may provide prognostic information prior to surgical resection. Computational modelling suggests changes in neural adaptation may be related to the observed low frequency power changes.
Funder
National Institutes of Health National Institute of Neurological Disorders and Stroke
Publisher
Oxford University Press (OUP)
Subject
General Earth and Planetary Sciences,General Environmental Science