Using common genetic variants to find drugs for common epilepsies

Author:

Mirza Nasir1,Stevelink Remi23,Taweel Basel4,Koeleman Bobby P C2,Marson Anthony G1,Abou-Khalil Bassel,Auce Pauls,Avbersek Andreja,Bahlo Melanie,Balding David J,Bast Thomas,Baum Larry,Becker Albert J,Berghuis Felicitas Becker Bianca,Berkovic Samuel F,Boysen Katja E,Bradfield Jonathan P,Brody Lawrence C,Buono Russell J,Campbell Ellen,Cascino Gregory D,Catarino Claudia B,Cavalleri Gianpiero L,Cherny Stacey S,Chinthapalli Krishna,Coffey Alison J,Compston Alastair,Coppola Antonietta,Cossette Patrick,Craig John J,de Haan Gerrit-Jan,De Jonghe Peter,de Kovel Carolien G. F,Delanty Norman,Depondt Chantal,Devinsky Orrin,Dlugos Dennis J,Doherty Colin P,Elger Christian E,Eriksson Johan G,Ferraro Thomas N,Feucht Martha,Francis Ben,Franke Andre,French Jacqueline A,Freytag Saskia,Gaus Verena,Geller Eric B,Gieger Christian,Glauser Tracy,Glynn Simon,Goldstein David B,Gui Hongsheng,Guo Youling,Haas Kevin F,Hakonarson Hakon,Hallmann Kerstin,Haut Sheryl,Heinzen Erin L,Helbig Ingo,Hengsbach Christian,Hjalgrim Helle,Iacomino Michele,Ingason Andrés,Jamnadas-Khoda Jennifer,Johnson Michael R,Kälviäinen Reetta,Kantanen Anne-Mari,Kasperavičiūte Dalia,Trenite Dorothee Kasteleijn-Nolst,Kirsch Heidi E,Knowlton Robert C,Koeleman Bobby P. C,Krause Roland,Krenn Martin,Kunz Wolfram S,Kuzniecky Ruben,Kwan Patrick,Lal Dennis,Lau Yu-Lung,Lerche Holger,Leu Costin,Lieb Wolfgang,Lindhout Dick,Lo Warren D,Lopes-Cendes Iscia,Lowenstein Daniel H,Malovini Alberto,Marson Anthony G,Mayer Thomas,McCormack Mark,Mills James L,Mirza Nasir,Moerzinger Martina,Møller Rikke S,Molloy Anne M,Muhle Hiltrud,Newton Mark,Ng Ping-Wing,Nöthen Markus M,Nürnberg Peter,O’Brien Terence J,Oliver Karen L,Palotie Aarno,Pangilinan Faith,Peter Sarah,Petrovski Slavé,Poduri Annapurna,Privitera Michael,Radtke Rodney,Rau Sarah,Reif Philipp S,Reinthaler Eva M,Rosenow Felix,Sander Josemir W,Sander Thomas,Scattergood Theresa,Schachter Steven C,Schankin Christoph J,Scheffer Ingrid E,Schmitz Bettina,Schoch Susanne,Sham Pak C,Shih Jerry J,Sills Graeme J,Sisodiya Sanjay M,Slattery Lisa,Smith Alexander,Smith David F,Smith Michael C,Smith Philip E,Sonsma Anja C. M,Speed Doug,Sperling Michael R,Steinhoff Bernhard J,Stephani Ulrich,Stevelink Remi,Strauch Konstantin,Striano Pasquale,Stroink Hans,Surges Rainer,Tan K. Meng,Thio Liu Lin,Thomas G. Neil,Todaro Marian,Tozzi Rossana,Vari Maria S,Vining Eileen P. G,Visscher Frank,Spiczak Sarah von,Walley Nicole M,Weber Yvonne G,Wei Zhi,Weisenberg Judith,Whelan Christopher D,Widdess-Walsh Peter,Wolff Markus,Wolking Stefan,Yang Wanling,Zara Federico,Zimprich Fritz,

Affiliation:

1. Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK

2. Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands; member of the ERN EpiCARE

3. Department of Child Neurology, University Medical Center Utrecht Brain Center, Utrecht 3584 CX, the Netherlands

4. School of Medicine, University of Liverpool, Liverpool L69 3GE, UK

Abstract

Abstract Better drugs are needed for common epilepsies. Drug repurposing offers the potential of significant savings in the time and cost of developing new treatments. In order to select the best candidate drug(s) to repurpose for a disease, it is desirable to predict the relative clinical efficacy that drugs will have against the disease. Common epilepsy can be divided into different types and syndromes. Different antiseizure medications are most effective for different types and syndromes of common epilepsy. For predictions of antiepileptic efficacy to be clinically translatable, it is essential that the predictions are specific to each form of common epilepsy, and reflect the patterns of drug efficacy observed in clinical studies and practice. These requirements are not fulfilled by previously published drug predictions for epilepsy. We developed a novel method for predicting the relative efficacy of drugs against any common epilepsy, by using its Genome-Wide Association Study summary statistics and drugs’ activity data. The methodological advancement in our technique is that the drug predictions for a disease are based upon drugs’ effects on the function and abundance of proteins, and the magnitude and direction of those effects, relative to the importance, degree and direction of the proteins’ dysregulation in the disease. We used this method to predict the relative efficacy of all drugs, licensed for any condition, against each of the major types and syndromes of common epilepsy. Our predictions are concordant with findings from real-world experience and randomized clinical trials. Our method predicts the efficacy of existing antiseizure medications against common epilepsies; in this prediction, our method outperforms the best alternative existing method: area under receiver operating characteristic curve (mean ± standard deviation) 0.83 ± 0.03 and 0.63 ± 0.04, respectively. Importantly, our method predicts which antiseizure medications are amongst the more efficacious in clinical practice, and which antiseizure medications are amongst the less efficacious in clinical practice, for each of the main syndromes of common epilepsy, and it predicts the distinct order of efficacy of individual antiseizure medications in clinical trials of different common epilepsies. We identify promising candidate drugs for each of the major syndromes of common epilepsy. We screen five promising predicted drugs in an animal model: each exerts a significant dose-dependent effect upon seizures. Our predictions are a novel resource for selecting suitable candidate drugs that could potentially be repurposed for each of the major syndromes of common epilepsy. Our method is potentially generalizable to other complex diseases.

Funder

Friends of Wilhemina KinderZiekenhuis MING

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3