Dynamic localization of αB-crystallin at the microtubule cytoskeleton network in beating heart cells

Author:

Ohto-Fujita Eri1,Hayasaki Saaya1,Atomi Aya1,Fujiki Soichiro2,Watanabe Toshiyuki3,Boelens Wilbert C4,Shimizu Miho1,Atomi Yoriko1ORCID

Affiliation:

1. Material Health Science Laboratory, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

2. Department of Physiology and Biological Information, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan

3. Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

4. Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands

Abstract

AbstractαB-crystallin is highly expressed in the heart and slow skeletal muscle; however, the roles of αB-crystallin in the muscle are obscure. Previously, we showed that αB-crystallin localizes at the sarcomere Z-bands, corresponding to the focal adhesions of cultured cells. In myoblast cells, αB-crystallin completely colocalizes with microtubules and maintains cell shape and adhesion. In this study, we show that in beating cardiomyocytes α-tubulin and αB-crystallin colocalize at the I- and Z-bands of the myocardium, where it may function as a molecular chaperone for tubulin/microtubules. Fluorescence recovery after photobleaching (FRAP) analysis revealed that the striated patterns of GFP-αB-crystallin fluorescence recovered quickly at 37°C. FRAP mobility assay also showed αB-crystallin to be associated with nocodazole-treated free tubulin dimers but not with taxol-treated microtubules. The interaction of αB-crystallin and free tubulin was further confirmed by immunoprecipitation and microtubule sedimentation assay in the presence of 1–100 μM calcium, which destabilizes microtubules. Förster resonance energy transfer analysis showed that αB-crystallin and tubulin were at 1–10 nm apart from each other in the presence of colchicine. These results suggested that αB-crystallin may play an essential role in microtubule dynamics by maintaining free tubulin in striated muscles, such as the soleus or cardiac muscles.

Funder

Scientific Research from the Japan Society for the Promotion of Science

Japan Space Utilization Promotion Center

Research grant from Japan Space Forum

Sasagawa Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Biochemistry,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3