Hydrogeophysical data integration through Bayesian Sequential Simulation with log-linear pooling

Author:

Nussbaumer Raphaël1ORCID,Mariethoz Grégoire2ORCID,Gloaguen Erwan3ORCID,Holliger Klaus14ORCID

Affiliation:

1. Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland

2. Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland

3. INRS, ETE, Quebec G1K 9A9, Quebec City, Canada

4. School of Earth Sciences, Zhejiang University, 310027 Hangzhou, China

Abstract

SUMMARY Bayesian sequential simulation (BSS) is a geostastistical technique, which uses a secondary variable to guide the stochastic simulation of a primary variable. As such, BSS has proven significant promise for the integration of disparate hydrogeophysical data sets characterized by vastly differing spatial coverage and resolution of the primary and secondary variables. An inherent limitation of BSS is its tendency to underestimate the variance of the simulated fields due to the smooth nature of the secondary variable. Indeed, in its classical form, the method is unable to account for this smoothness because it assumes independence of the secondary variable with regard to neighbouring values of the primary variable. To overcome this limitation, we have modified the Bayesian updating with a log-linear pooling approach, which allows us to account for the inherent interdependence between the primary and the secondary variables by adding exponential weights to the corresponding probabilities. The proposed method is tested on a pertinent synthetic hydrogeophysical data set consisting of surface-based electrical resistivity tomography (ERT) data and local borehole measurements of the hydraulic conductivity. Our results show that, compared to classical BSS, the proposed log-linear pooling method using equal constant weights for the primary and secondary variables enhances the reproduction of the spatial statistics of the stochastic realizations, while maintaining a faithful correspondence with the geophysical data. Significant additional improvements can be achieved by optimizing the choice of these constant weights. We also explore a dynamic adaptation of the weights during the course of the simulation process, which provides valuable insights into the optimal parametrization of the proposed log-linear pooling approach. The results corroborate the strategy of selectively emphasizing the probabilities of the secondary and primary variables at the very beginning and for the remainder of the simulation process, respectively.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3