Revisited Bayesian Sequential Indicator Simulation: Using a Log-Linear Pooling Approach

Author:

Madani NasserORCID

Abstract

It has been more than a decade since sequential indicator simulation was proposed to model geological features. Due to its simplicity and easiness of implementation, the algorithm attracts the practitioner’s attention and is rapidly becoming available through commercial software programs for modeling mineral deposits, oil reservoirs, and groundwater resources. However, when the algorithm only uses hard conditioning data, its inadequacy to model the long-range geological features has always been a research debate in geostatistical contexts. To circumvent this difficulty, one or several pieces of soft information can be introduced into the simulation process to assist in reproducing such large-scale settings. An alternative format of Bayesian sequential indicator simulation is developed in this work that integrates a log-linear pooling approach by using the aggregation of probabilities that are reported by two sources of information, hard and soft data. The novelty of this revisited Bayesian technique is that it allows the incorporation of several influences of hard and soft data in the simulation process by assigning the weights to their probabilities. In this procedure, the conditional probability of soft data can be directly estimated from hard conditioning data and then be employed with its corresponding weight of influence to update the weighted conditional portability that is simulated from the same hard conditioning and previously simulated data in a sequential manner. To test the algorithm, a 2D synthetic case study is presented. The findings showed that the resulting maps obtained from the proposed revisited Bayesian sequential indicator simulation approach outperform other techniques in terms of reproduction of long-range geological features while keeping its consistency with other expected local and global statistical measures.

Funder

Nazarbayev University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3