Affiliation:
1. Seismological Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
Abstract
SUMMARY
Earthquake source estimates are affected by many types of uncertainties, deriving from observational errors, modelling choices and our simplified description of the Earth’s interior. While observational errors are often accounted for, epistemic uncertainties, which stem from our imperfect description of the forward model, are usually neglected. In particular, 3-D variations in crustal properties are rarely considered. 3-D crustal heterogeneity is known to largely affect estimates of the seismic source, using either geodetic or seismic data. Here, we use a perturbation approach to investigate, and account for, the impact of epistemic uncertainties related to 3-D variations of the mechanical properties of the crust. We validate our approach using a Bayesian sampling procedure applied to synthetic geodetic data generated from 2-D and 3-D finite-fault models. We show that accounting for uncertainties in crustal structure systematically increases the reliability of source estimates.
Funder
National Aeronautics and Space Administration
Publisher
Oxford University Press (OUP)
Subject
Geochemistry and Petrology,Geophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献