On the helicity characteristics and induced emf of magnetic-Coriolis wave packets

Author:

McDermott B R1ORCID,Davidson P A1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

Abstract

SUMMARY In a rapidly rotating Boussinesq fluid, buoyant anomalies radiate low-frequency inertial wave packets that disperse along the rotation axis. The wave packets lead to axially elongated vortices, which propagate negative (positive) kinetic helicity upwards (downwards) with respect to the rotation vector. The kinetic helicity carried by the inertial wave packets is near-maximal relative to the velocity and vorticity fields. In classical mean-field theory, kinetic helicity is often associated with the α-effect, which is thought to be an important ingredient for planetary dynamos. The modification of inertial wave packets in the presence of a transverse uniform magnetic field is investigated here, motivated by small-scale dynamics in planetary cores, where a large-scale magnetic field affects fluid motions. We study numerically the dispersion of wave packets from an isolated buoyant source and from a random layer of buoyant anomalies, while varying the Lehnert number Le—the ratio of the frequencies of Alfvén and inertial waves. We find that for Le < 0.1, the vortices are columnar and continue to segregate kinetic helicity so that it is negative (positive) above (below) the buoyant source. Importantly, the wave packets induce an α-effect, which remains strong and coherent for Earth-like values of the Lehnert number (Le < 0.1). The interaction of wave packets emitted by multiple neighbouring buoyant sources results in an α-effect that is stronger than the α-effect induced by wave packets launched from an isolated buoyant source, and we provide an analytical explanation for this. The coherence of the α-effect induced by the wave packets, for Earth-like values of the Lehnert number, lends support to the α2 dynamo model driven by helical waves.

Funder

Leverhulme Trust

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference24 articles.

1. Approaching Earth’s core conditions in high-resolution geodynamo simulations;Aubert;Geophys. J. Int.,2019

2. Inertial–Alfvén waves as columnar helices in planetary cores;Bardsley;J. Fluid Mech.,2016

3. The dispersion of magnetic-Coriolis waves in planetary cores;Bardsley;Geophys. J. Int.,2017

4. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields;Christensen;Geophys. J. Int.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Spatial Segregation of Kinetic Helicity in Geodynamo Simulations;Helicities in Geophysics, Astrophysics, and Beyond;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3