Inertial–Alfvén waves as columnar helices in planetary cores

Author:

Bardsley O. P.ORCID,Davidson P. A.

Abstract

We consider a rapidly rotating, Boussinesq fluid stirred by buoyant anomalies. In such a system it is known that, in the absence of a magnetic field, inertial waves whose wave vectors lie normal to the rotation axis play a key role in establishing quasi-geostrophic motion. In particular, buoyant anomalies radiate low-frequency inertial wave packets which disperse along the rotation axis, leading to axially elongated columnar vortices. Here we focus on the influence of an ambient magnetic field on this process, motivated by the dynamics of planetary cores. We find that, once again, the waves responsible for establishing quasi-geostrophic structures have wave vectors normal to the rotation axis; however, these are not conventional inertial waves, but rather hybrid ‘inertial–Alfvén waves’. Their frequency equals that of an Alfvén wave but their axial group velocity is half that of the equivalent inertial wave. They have maximal kinetic, magnetic and cross-helicity, carry magnetic and kinetic energy in equal amounts, and are particularly potent in establishing columnar, helical vortices through the spontaneous emission of axially elongated wave packets. Although our hybrid inertial–Alfvén waves have been overlooked in dynamo literature to date, we speculate that they in fact play a central role in planetary dynamos.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Spatial Segregation of Kinetic Helicity in Geodynamo Simulations;Helicities in Geophysics, Astrophysics, and Beyond;2023-12-15

2. Gyres, jets and waves in the Earth’s core;Nature Reviews Earth & Environment;2023-05-24

3. The role of slow magnetostrophic waves in the formation of the axial dipole in planetary dynamos;Physics of the Earth and Planetary Interiors;2022-12

4. Waves in the Earth's core. II. Magneto–Coriolis modes;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-05

5. Magnetic Helicity and the Geodynamo;Fluids;2021-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3