A simultaneous calibration and data assimilation (C/DA) to improve NRLMSISE00 using thermospheric neutral density (TND) from space-borne accelerometer measurements

Author:

Forootan E1ORCID,Farzaneh S2,Kosary M2,Schmidt M3,Schumacher M4

Affiliation:

1. Geodesy and Earth Observation Group, Institute of Planning, Aalborg University, Rendburggade 14,9000 Aalborg, Denmark

2. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 113654563, Iran

3. German Geodetic Research Institute (DGFI), Technical University of Munich, Alfons-Goppel-Straße 11, 80539 Munich, Germany

4. Institute of Physics and Meteorology (IPM), University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany

Abstract

SUMMARY Improving thermospheric neutral density (TND) estimates is important for computing drag forces acting on low-Earth-orbit (LEO) satellites and debris. Empirical thermospheric models are often used to compute TNDs for the precise orbit determination experiments. However, it is known that simulating TNDs are of limited accuracy due to simplification of model structure, coarse sampling of model inputs and dependencies to the calibration period. Here, we apply TND estimates from accelerometer measurements of the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE) missions as observations to improve the NRLMSISE-00 model, which belongs to the mass spectrometer and incoherent scatter family of models. For this, a novel simultaneous calibration and data assimilation (C/DA) technique is implemented that uses the ensemble Kalman filter and the ensemble square-root Kalman filter as merger. The application of C/DA is unique because it modifies both model-derived TNDs, as well as the selected model parameters. The calibrated parameters derived from C/DA are then used to predict TNDs in locations that are not covered by CHAMP and GRACE orbits, and forecasting TNDs of the next day. The C/DA is implemented using daily CHAMP- and/or GRACE-TNDs, for which compared to the original model, we find 27 per cent and 62 per cent reduction of misfit between model and observations in terms of root mean square error and Nash coefficient, respectively. These validations are performed using the observations along the orbital track of the other satellite that is not used in the C/DA during 2003 with various solar activity. Comparisons with another empirical model, that is, Jacchia-Bowman, indicate that the C/DA results improve these quality measurements on an average range of 50 per cent and 60 per cent, respectively.

Funder

DFG

German Academic Exchange Service

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3