Assimilating Space‐Based Thermospheric Neutral Density (TND) Data Into the TIE‐GCM Coupled Model During Periods With Low and High Solar Activity

Author:

Kosary Mona1ORCID,Farzaneh Saeed1ORCID,Schumacher Maike2ORCID,Forootan Ehsan2ORCID

Affiliation:

1. School of Surveying and Geospatial Engineering College of Engineering University of Tehran Tehran Iran

2. Department of Planning Geodesy Group Aalborg University Aalborg Denmark

Abstract

AbstractThe global estimation of Thermospheric Neutral Density (TND) and electron density (Ne) on various altitudes are provided by upper atmosphere models, however, the quality of their forecasts needs to be improved. In this study, we present the impact of assimilating space‐based TNDs, measured along Low Earth Orbit (LEO) mission, into the NCAR Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIE‐GCM). In these experiments, the Ensemble Kalman Filter (EnKF) merger of the Data Assimilation Research Testbed (DART) community software is applied. To cover various space‐based TND data and both low and high solar activity periods, we used the measurements of CHAMP (Challenging Minisatellite Payload) and Swarm‐C as assimilated observations. The TND forecasts are then validated against independent TNDs of GRACE (Gravity Recovery and Climate Experiment mission) and Swarm‐B, respectively. To introduce the impact of the thermosphere on estimating ionospheric parameters, the outputs of Ne are validated against the radio occultation data. The Data Assimilation (DA) results indicate that TIE‐GCM overestimates (underestimates) TND and Ne during low (high) solar activity. Considerable improvements are found in forecasting TNDs after DA, that is, the Root Mean Squared Error (RMSE) is reduced by 79% and 51% during low and high solar activity periods, respectively. The reduction values for Ne are found to be 52.3% and 40.4%, respectively.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3