A Machine Learning Approach to Predict the Added-Sugar Content of Packaged Foods

Author:

Davies Tazman1,Louie Jimmy Chun Yu12ORCID,Ndanuko Rhoda1ORCID,Barbieri Sebastiano3,Perez-Concha Oscar3ORCID,Wu Jason H Y1

Affiliation:

1. The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia

2. School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong Special Administrative Region

3. Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales, Australia

Abstract

ABSTRACT Background Dietary guidelines recommend limiting the intake of added sugars. However, despite the public health importance, most countries have not mandated the labeling of added-sugar content on packaged foods and beverages, making it difficult for consumers to avoid products with added sugar, and limiting the ability of policymakers to identify priority products for intervention. Objective The aim was to develop a machine learning approach for the prediction of added-sugar content in packaged products using available nutrient, ingredient, and food category information. Methods The added-sugar prediction algorithm was developed using k-nearest neighbors (KNN) and packaged food information from the US Label Insight dataset (n = 70,522). A synthetic dataset of Australian packaged products (n = 500) was used to assess validity and generalization. Performance metrics included the coefficient of determination (R2), mean absolute error (MAE), and Spearman rank correlation (ρ). To benchmark the KNN approach, the KNN approach was compared with an existing added-sugar prediction approach that relies on a series of manual steps. Results Compared with the existing added-sugar prediction approach, the KNN approach was similarly apt at explaining variation in added-sugar content (R2 = 0.96 vs. 0.97, respectively) and ranking products from highest to lowest in added-sugar content (ρ = 0.91 vs. 0.93, respectively), while less apt at minimizing absolute deviations between predicted and true values (MAE = 1.68 g vs. 1.26 g per 100 g or 100 mL, respectively). Conclusions KNN can be used to predict added-sugar content in packaged products with a high degree of validity. Being automated, KNN can easily be applied to large datasets. Such predicted added-sugar levels can be used to monitor the food supply and inform interventions aimed at reducing added-sugar intake.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3