CADD v1.7: using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions

Author:

Schubach Max1ORCID,Maass Thorben2ORCID,Nazaretyan Lusiné1ORCID,Röner Sebastian1ORCID,Kircher Martin12ORCID

Affiliation:

1. Exploratory Diagnostic Sciences, Berlin Institute of Health at Charité – Universitätsmedizin Berlin , Berlin , Germany

2. Institute of Human Genetics, University Hospital Schleswig-Holstein, University of Lübeck , Lübeck , Germany

Abstract

Abstract Machine Learning-based scoring and classification of genetic variants aids the assessment of clinical findings and is employed to prioritize variants in diverse genetic studies and analyses. Combined Annotation-Dependent Depletion (CADD) is one of the first methods for the genome-wide prioritization of variants across different molecular functions and has been continuously developed and improved since its original publication. Here, we present our most recent release, CADD v1.7. We explored and integrated new annotation features, among them state-of-the-art protein language model scores (Meta ESM-1v), regulatory variant effect predictions (from sequence-based convolutional neural networks) and sequence conservation scores (Zoonomia). We evaluated the new version on data sets derived from ClinVar, ExAC/gnomAD and 1000 Genomes variants. For coding effects, we tested CADD on 31 Deep Mutational Scanning (DMS) data sets from ProteinGym and, for regulatory effect prediction, we used saturation mutagenesis reporter assay data of promoter and enhancer sequences. The inclusion of new features further improved the overall performance of CADD. As with previous releases, all data sets, genome-wide CADD v1.7 scores, scripts for on-site scoring and an easy-to-use webserver are readily provided via https://cadd.bihealth.org/ or https://cadd.gs.washington.edu/ to the community.

Funder

Berlin Institute of Health at Charité – Universitätsmedizin Berlin

Deutsche Forschungsgemeinschaft

NHGRI

Helmholtz Einstein International Berlin Research School in Data Science

University of Lübeck

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3