An interaction between eIF4A3 and eIF3g drives the internal initiation of translation

Author:

Chang Jeeyoon1,Shin Min-Kyung2,Park Joori2,Hwang Hyun Jung1,Locker Nicolas3,Ahn Junhak4,Kim Doyeon4,Baek Daehyun4,Park Yeonkyoung1ORCID,Lee Yujin2,Boo Sung Ho2,Kim Hyeong-In1,Kim Yoon Ki1ORCID

Affiliation:

1. Department of Biological Sciences, Korea Advanced Institute of Science and Technology , Daejeon  34141 , Republic of Korea

2. Division of Life Sciences, Korea University , Seoul  02841 , Republic of Korea

3. Department of Microbial and Cellular Sciences, University of Surrey , Guildford GU2 7HX, UK

4. School of Biological Sciences, Seoul National University , Seoul  08826 , Republic of Korea

Abstract

Abstract An RNA structure or modified RNA sequences can provide a platform for ribosome loading and internal translation initiation. The functional significance of internal translation has recently been highlighted by the discovery that a subset of circular RNAs (circRNAs) is internally translated. However, the molecular mechanisms underlying the internal initiation of translation in circRNAs remain unclear. Here, we identify eIF3g (a subunit of eIF3 complex) as a binding partner of eIF4A3, a core component of the exon-junction complex (EJC) that is deposited onto spliced mRNAs and plays multiple roles in the regulation of gene expression. The direct interaction between eIF4A3-eIF3g serves as a molecular linker between the eIF4A3 and eIF3 complex, thereby facilitating internal ribosomal entry. Protein synthesis from in vitro-synthesized circRNA demonstrates eIF4A3-driven internal translation, which relies on the eIF4A3-eIF3g interaction. Furthermore, our transcriptome-wide analysis shows that efficient polysomal association of endogenous circRNAs requires eIF4A3. Notably, a subset of endogenous circRNAs can express a full-length intact protein, such as β-catenin, in an eIF4A3-dependent manner. Collectively, our results expand the understanding of the protein-coding potential of the human transcriptome, including circRNAs.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Biotechnology and Biological Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics

Reference83 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3