The Flexible Loop is a New Sweetness Determinant Site of the Sweet-Tasting Protein: Characterization of Novel Sweeter Mutants of the Single-Chain Monellin (MNEI)

Author:

Yang Liu1,Zhu Kongkai2,Yu Haifeng1,Zhang Xinlei3,Liu Bo14

Affiliation:

1. Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China

2. School of Biological Science and Technology, University of Jinan, Jinan, P.R. China

3. Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi, P.R. China

4. Department of Biochemistry and Molecular Biology, Shandong University, Jinan, Shandong, P.R. China

Abstract

AbstractThe single-chain monellin (MNEI) displays same sweet potency as the natural monellin protein. To identify critical residues determining its sweetness, residues located at the loops region were selected for mutagenesis analysis. Mutations of positive-charge residues R31, R53, and R82 consistently led to obvious decrease of sweetness, whereas mutations of negative-charge residues resulted in variable sweet potency. Of note, the E50N mutant in the loop region linking the 2 natural chains showed significantly increased sweetness. Mutations of this residue to M or K led to similar effects, in accordance with the so-called wedge model for explanation of the sweet protein–receptor interaction. Homology modeling was carried out with the firstly reported crystal structure of sweet taste receptor (from medaka fish) as the template, and molecular docking and dynamics simulations suggested that flexible conformations of specific residues located in the loops region play essential roles for the interaction with the receptor and the sweetness of the protein. Moreover, obvious additive effects were found for the sweetness as 2 double-site mutants (E50N/Y65R and E2N/E50N) displayed increased sweetness than their single-site mutants. Our results revealed the flexible loop L23 linking the 2 natural chains as a novel sweetness determinant site of the sweet protein monellin and raised a series of new sweeter mutants, which could provide helpful guidance for molecular designing the sweet-tasting proteins.

Funder

National Natural Science Foundation of China

Shandong Provincial Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Behavioral Neuroscience,Physiology (medical),Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3