The trilogy of human musk receptors: linking receptor activation, genotype, and sensory perception

Author:

Emter Roger1ORCID,Merillat Christel1ORCID,Dossenbach Sandro1ORCID,Natsch Andreas1ORCID

Affiliation:

1. Fragrances S&T, Ingredients Research, Givaudan Schweiz AG , Kemptthal , Switzerland

Abstract

Abstract The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40–60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.

Publisher

Oxford University Press (OUP)

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3