Dorsal Pigmentation and Its Association with Functional Variation in MC1R in a Lizard from Different Elevations on the Qinghai–Tibetan Plateau

Author:

Jin Yuanting1,Tong Haojie1,Shao Gang1,Li Jiasheng1,Lv Yudie1,Wo Yubin1,Brown Richard P12ORCID,Fu Caiyun3

Affiliation:

1. College of Life Sciences, China Jiliang University, Hangzhou, China

2. School of Biological & Environmental Sciences, Liverpool John Moores University, United Kingdom

3. Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Abstract Identification of the role of the MC1R gene has provided major insights into variation in skin pigmentation in several organisms, including humans, but the evolutionary genetics of this variation is less well established. Variation in this gene and its relationship with degree of melanism was analyzed in one of the world’s highest-elevation lizards, Phrynocephalus theobaldi from the Qinghai–Tibetan Plateau. Individuals from the low-elevation group were shown to have darker dorsal pigmentation than individuals from a high-elevation group. The existence of climatic variation across these elevations was quantified, with lower elevations exhibiting higher air pressure, temperatures, and humidity, but less wind and insolation. Analysis of the MC1R gene in 214 individuals revealed amino acid differences at five sites between intraspecific sister lineages from different elevations, with two sites showing distinct fixed residues at low elevations. Three of the four single-nucleotide polymorphisms that underpinned these amino acid differences were highly significant outliers, relative to the generalized MC1R population structuring, suggestive of selection. Transfection of cells with an MC1R allele from a lighter high-elevation population caused a 43% reduction in agonist-induced cyclic AMP accumulation, and hence lowered melanin synthesis, relative to transfection with an allele from a darker low-elevation population. The high-elevation allele led to less efficient integration of the MC1R protein into melanocyte membranes. Our study identifies variation in the degree of melanism that can be explained by four or fewer MC1R substitutions. We establish a functional link between these substitutions and melanin synthesis and demonstrate elevation-associated shifts in their frequencies.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3