The impact of elevation and prediction of climate change on an ultra high‐elevation ectotherm

Author:

Gao Jie1,Wei Zian1,Jin Yuanting1ORCID

Affiliation:

1. College of Life Sciences China Jiliang University Hangzhou Zhejiang China

Abstract

AbstractClimate change may affect the survival and reproduction of ectotherms. The toad‐headed lizard Phrynocephalus theobaldi, which holds the distinction of occupying the highest elevation among all reptile species on Earth, with an elevational range from 3600 to 5000 m, represents an ideal model for studying the adaptations to climatic changes across elevational gradients. Here, we used mechanistic and hybrid species distribution models (HSDM) together with characteristic measurements of thermal biology (CTmax, CTmin, and Tsel) to simulate and compare the distribution and activity periods of the lizard across elevations in response to climate change. NicheMapR simulations using only climate factors predicted that all populations will be negatively impacted by climate change (+3°C) by suffering a reduced distribution. However, the impact was clearly reduced in simulations that accounted for thermal physiological traits. Longer activity periods were predicted for all populations during climate change. The suitable distribution is predicted to change slightly, with an increase anticipated for both high and low elevation populations. However, the forecast indicates a more pronounced increase in suitable habitats for populations at higher elevations (>4200 m) compared to those at lower elevations (<4200 m). This study underscores the key influence of climate change on population establishment and stresses the importance of physiological traits in distribution simulation for future studies to understand the potential constraints in animal adaptation to extreme high environments.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3