Probabilistic Machine Learning with Low-Cost Sensor Networks for Occupational Exposure Assessment and Industrial Hygiene Decision Making

Author:

Patton Andrew N1ORCID,Medvedovsky Konstantin2,Zuidema Christopher3ORCID,Peters Thomas M4ORCID,Koehler Kirsten1

Affiliation:

1. Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

2. QR Analytics, Washington DC, USA

3. Department of Environmental and Occupational Health Sciences, University of Washington Hans Rosling Center for Population Health, Seattle, WA, USA

4. Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA

Abstract

Abstract Occupational exposure assessments are dominated by small sample sizes and low spatial and temporal resolution with a focus on conducting Occupational Safety and Health Administration regulatory compliance sampling. However, this style of exposure assessment is likely to underestimate true exposures and their variability in sampled areas, and entirely fail to characterize exposures in unsampled areas. The American Industrial Hygiene Association (AIHA) has developed a more realistic system of exposure ratings based on estimating the 95th percentiles of the exposures that can be used to better represent exposure uncertainty and exposure variability for decision-making; however, the ratings can still fail to capture realistic exposure with small sample sizes. Therefore, low-cost sensor networks consisting of numerous lower-quality sensors have been used to measure occupational exposures at a high spatiotemporal scale. However, the sensors must be calibrated in the laboratory or field to a reference standard. Using data from carbon monoxide (CO) sensors deployed in a heavy equipment manufacturing facility for eight months from August 2017 to March 2018, we demonstrate that machine learning with probabilistic gradient boosted decision trees (GBDT) can model raw sensor readings to reference data highly accurately, entirely removing the need for laboratory calibration. Further, we indicate how the machine learning models can produce probabilistic hazard maps of the manufacturing floor, creating a visual tool for assessing facility-wide exposures. Additionally, the ability to have a fully modeled prediction distribution for each measurement enables the use of the AIHA exposure ratings, which provide an enhanced industrial decision-making framework as opposed to simply determining if a small number of measurements were above or below a pertinent occupational exposure limit. Lastly, we show how a probabilistic modeling exposure assessment with high spatiotemporal resolution data can prevent exposure misclassifications associated with traditional models that rely exclusively on mean or point predictions.

Funder

U.S. Centers for Disease Control and Prevention

National Institute for Occupational Safety and Health

Johns Hopkins Education and Research Center for Occupational Safety and Health

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3