Treating Time with All Due Seriousness

Author:

Keele Luke,Linn Suzanna,Webb Clayton McLaughlin

Abstract

In this article, we highlight three points. First, we counter Grant and Lebo's claim that the error correction model (ECM) cannot be applied to stationary data. We maintain that when data are properly stationary, the ECM is an entirely appropriate model. We clarify that for a model to be properly stationary, it must be balanced. Second, we contend that while fractional integration techniques can be useful, they also have important weaknesses, especially when applied to many time series typical in political science. We also highlight two related but often ignored complications in time series: low power and overfitting. We argue that the statistical tests used in time-series analyses have little power to detect differences in many of the sample sizes typical in political science. Moreover, given the small sample sizes, many analysts overfit their time-series models. Overfitting occurs when a statical model describes random error or noise instead of the underlying relationship. We argue that the results in the Grant and Lebo replications could easily be a function of overfitting.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3