Dynamic Models for Dynamic Theories: The Ins and Outs of Lagged Dependent Variables

Author:

Keele Luke,Kelly Nathan J.

Abstract

A lagged dependent variable in an OLS regression is often used as a means of capturing dynamic effects in political processes and as a method for ridding the model of autocorrelation. But recent work contends that the lagged dependent variable specification is too problematic for use in most situations. More specifically, if residual autocorrelation is present, the lagged dependent variable causes the coefficients for explanatory variables to be biased downward. We use a Monte Carlo analysis to assess empirically how much bias is present when a lagged dependent variable is used under a wide variety of circumstances. In our analysis, we compare the performance of the lagged dependent variable model to several other time series models. We show that while the lagged dependent variable is inappropriate in some circumstances, it remains an appropriate model for the dynamic theories often tested by applied analysts. From the analysis, we develop several practical suggestions on when and how to use lagged dependent variables on the right-hand side of a model.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Cited by 654 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3