Affiliation:
1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing, People's Republic of China
2. Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
3. College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
4. Department of Animal Science, Cornell University, Ithaca, NY, USA
Abstract
ABSTRACT
Background
The metabolic function of selenoprotein V (SELENOV) remains unknown.
Objectives
Two experiments were conducted to determine effects of the Selenov knockout (KO) on selenium concentration and mRNA, protein, and/or activity of 4 major selenoproteins [glutathione peroxidase (GPX) 1, GPX4, thioredoxin reductase-1 (TXNRD1), and selenoprotein P (SELENOP)] in the serum, liver, testis, and/or white adipose tissue (WAT) of mice fed different dietary selenium and fat concentrations.
Methods
In Experiment (Expt) 1, 40 KO and 40 wild-type (WT) mice (males, 8 wk old) were fed (n = 10/genotype) a casein-sucrose basal diet plus 0, 0.3, 1, or 3 mg Se/kg (as sodium selenite) for 32 wk . In Expt 2, 20 KO and 20 WT mice (males, 8 wk old) were fed (n = 10/genotype) a normal-fat diet (NF; 10% calories from fat) or a high-fat diet (HF; 60% calories from fat) for 19 wk.
Results
In Expt 1, the KO caused consistent or substantial decreases (P < 0.05) of mRNA amounts of Gpx1, Txnrd1, and Selenop in the testis (≤52%), but selenium concentrations (19–29%) and GPX activities (≤ 50%) were decreased in the liver across different dietary selenium concentrations . Hepatic and testis GPX1 protein was elevated (≤31%) and decreased (≤45%) by the KO, respectively. In Expt 2, the genotype and dietary fat intake exerted interaction effects ( P < 0.05) on Gpx1 mRNA amounts in the WAT; Gpx1, Txnrd1, and Selenop mRNA amounts and TXNRD activities in the testis; and selenium concentrations in the serum and liver. However, these 2 treatments produced largely independent or additive effects (P < 0.05) on the GPX1 and SELENOP protein amounts in the liver and testis (up to ± 50% changes).
Conclusions
The KO-mediated changes in the tissue selenium concentrations and functional expression of 3 major selenoproteins implied potential for SELENOV in regulating body selenium metabolism in the mouse.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Nutrition and Dietetics,Medicine (miscellaneous)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献