On the Economic Significance of Stock Return Predictability

Author:

Cederburg Scott1,Johnson Travis L2,O’Doherty Michael S3

Affiliation:

1. Eller College of Management, University of Arizona , USA

2. McCombs School of Business, University of Texas at Austin , USA

3. Trulaske College of Business, University of Missouri , USA

Abstract

Abstract We study the effects of time-varying volatility and investment horizon on the economic significance of stock market return predictability from the perspective of Bayesian investors. Using a vector autoregression framework with stochastic volatility (SV) in market returns and predictor variables, we assess a broad set of twenty-six predictors with both in-sample and out-of-sample designs. Volatility and horizon are critically important for assessing return predictors, as these factors affect how an investor learns about predictability and how she chooses to invest based on return forecasts. We find that statistically strong predictors can be economically unimportant if they tend to take extreme values in high volatility periods, have low persistence, or follow distributions with fat tails. Several popular predictors exhibit these properties such that their impressive statistical results do not translate into large economic gains. We also demonstrate that incorporating SV leads to substantial utility gains in real-time forecasting.

Publisher

Oxford University Press (OUP)

Subject

Finance,Economics and Econometrics,Accounting

Reference54 articles.

1. Stock return predictability and model uncertainty;Avramov;Journal of Financial Economics,2002

2. Stock return predictability and asset pricing models;Avramov;Review of Financial Studies,2004

3. Investing in mutual funds when returns are predictable;Avramov;Journal of Financial Economics,2006

4. Bayesian portfolio analysis;Avramov;Annual Review of Financial Economics,2010

5. Hedge funds, managerial skill, and macroeconomic variables;Avramov;Journal of Financial Economics,2011

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3