Prevalence of chronic kidney disease in France: methodological considerations and pitfalls with the use of Health claims databases

Author:

Couchoud Cécile1ORCID,Raffray Maxime2,Lassalle Mathilde3,Duisenbekov Zhanibek3,Moranne Olivier4ORCID,Erbault Marie5,Lazareth Hélène6,Parmentier Cyrielle7,Guebre-Egziabher Fitsum8,Hamroun Aghiles9,Metzger Marie10,Mansouri Imene11,Goldberg Marcel12ORCID,Zins Maris12,Bayat-Makoei Sahar2,Kab Sofiane12ORCID

Affiliation:

1. Réseau Epidémiologie et Information en Néphrologie, Agence de la Biomédecine , Saint-Denis -La-Plaine, France

2. Univ. Rennes, EHESP, CNRS, Inserm, Arènes - UMR 6051, RSMS (Recherche sur les Services et Management en Santé) - U 1309 – Rennes , France

3. Réseau Epidémiologie et Information en Néphrologie, Agence de la Biomédecine , Saint-Denis-La-Plaine , France

4. Service Néphrologie-Dialyse-Apherese, Hôpital Universitaire Caremau, Nîmes, IDESP Université de Montpellier , France

5. Haute Autorité de Santé , Saint-Denis-La-Plaine , France

6. Service de Néphrologie, HEGP, APHP , Paris , France

7. Service de Néphrologie, Trousseau, APHP , Paris , France

8. Service Néphrologie-Dialyse-Aphérèse-Hypertension, Hôpital Edouard Herriot, Hospices Civils de Lyon, Université Lyon-1 INSERM U 1060 , Lyon , France

9. Department of Public Health – Epidemiology, Department of Nephrology, Lille University Hospital Center, RIDAGE, Pasteur Institute of Lille, Inserm, Lille University , Lille , France

10. Center for Research in Epidemiology and Population Health, Paris-Saclay University, Paris-Sud University, Versailles Saint Quentin University, Inserm , Villejuif , France

11. Direction Procréation, Embryologie et Génétique Humaine, Agence de la Biomédecine , Saint-Denis-La-Plaine , France

12. Cohorte CONSTANCES, Inserm UMS11 , Villejuif , France

Abstract

ABSTRACT Background Health policy-making require careful assessment of chronic kidney disease (CKD) epidemiology to develop efficient and cost-effective care strategies. The aim of the present study was to use the RENALGO-EXPERT algorithm to estimate the global prevalence of CKD in France. Methods An expert group developed the RENALGO-EXPERT algorithm based on healthcare consumption. This algorithm has been applied to the French National Health claims database (SNDS), where no biological test findings are available to estimate a national CKD prevalence for the years 2018–2021. The CONSTANCES cohort (+219 000 adults aged 18–69 with one CKD-EPI eGFR) was used to discuss the limit of using health claims data. Results Between 2018 and 2021, the estimated prevalence in the SNDS increased from 8.1% to 10.5%. The RENALGO-EXPERT algorithm identified 4.5% of the volunteers in the CONSTANCES as CKD. The RENALGO-EXPERT algorithm had a positive predictive value of 6.2% and negative predictive value of 99.1% to detect an eGFR<60 ml/min/1.73 m². Half of 252 false positive cases (ALGO+, eGFR > 90) had been diagnosed with kidney disease during hospitalization, and the other half based on healthcare consumption suggestive of a ‘high-risk’ profile; 95% of the 1661 false negatives (ALGO−, eGFR < 60) had an eGFR between 45 and 60 ml/min, half had medication and two-thirds had biological exams possibly linked to CKD. Half of them had a hospital stay during the period but none had a diagnosis of kidney disease. Conclusions Our result is in accordance with other estimations of CKD prevalence in the general population. Analysis of diverging cases (FP and FN) suggests using health claims data have inherent limitations. Such an algorithm can identify patients whose care pathway is close to the usual and specific CKD pathways. It does not identify patients who have not been diagnosed or whose care is inappropriate or at early stage with stable GFR.

Funder

French National Health Insurance Fund

French National Agency for Research

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3