Sex-specific regulation of collagen I and III expression by 17β-Estradiol in cardiac fibroblasts: role of estrogen receptors

Author:

Dworatzek Elke12,Mahmoodzadeh Shokoufeh23,Schriever Cindy3,Kusumoto Kana1,Kramer Lisa12,Santos Gabriela45,Fliegner Daniela6,Leung Yuet-Kin7,Ho Shuk-Mei7,Zimmermann Wolfram-Hubertus45,Lutz Susanne45,Regitz-Zagrosek Vera12

Affiliation:

1. Charité-Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany

2. DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany

3. Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany

4. Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany

5. DZHK, partner site Göttingen, Göttingen, Germany

6. Pfizer Pharma GmbH, Berlin, Germany

7. Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH, USA

Abstract

Abstract Aims Sex differences in cardiac fibrosis point to the regulatory role of 17β-Estradiol (E2) in cardiac fibroblasts (CF). We, therefore, asked whether male and female CF in rodent and human models are differentially susceptible to E2, and whether this is related to sex-specific activation of estrogen receptor alpha (ERα) and beta (ERβ). Methods and results In female rat CF (rCF), 24 h E2-treatment (10−8  M) led to a significant down-regulation of collagen I and III expression, whereas both collagens were up-regulated in male rCF. E2-induced sex-specific collagen regulation was also detected in human CF, indicating that this regulation is conserved across species. Using specific ERα- and ERβ-agonists (10−7 M) for 24 h, we identified ERα as repressive and ERβ as inducing factor in female and male rCF, respectively. In addition, E2-induced ERα phosphorylation at Ser118 only in female rCF, whereas Ser105 phosphorylation of ERβ was exclusively found in male rCF. Further, in female rCF we found both ER bound to the collagen I and III promoters using chromatin immunoprecipitation assays. In contrast, in male rCF only ERβ bound to both promoters. In engineered connective tissues (ECT) from rCF, collagen I and III mRNA were down-regulated in female ECT and up-regulated in male ECT by E2. This was accompanied by an impaired condensation of female ECT, whereas male ECT showed an increased condensation and stiffness upon E2-treatment, analysed by rheological measurements. Finally, we confirmed the E2-effect on both collagens in an in vivo mouse model with ovariectomy for E2 depletion, E2 substitution, and pressure overload by transverse aortic constriction. Conclusion The mechanism underlying the sex-specific regulation of collagen I and III in the heart appears to involve E2-mediated differential ERα and ERβ signaling in CFs.

Funder

NIH

German Research Foundation

DFG

Deutsche Stiftung für Herzforschung

DZHK

German Centre for Cardiovascular Research

BMBF

German Ministry of Education and Research

Foundation Leducq

US National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3