Gromov–Witten Theory of $\text{K3} \times {\mathbb{P}}^1$ and Quasi-Jacobi Forms

Author:

Oberdieck Georg1

Affiliation:

1. MIT, Department of Mathematics, USA

Abstract

Abstract Let $S$ be a K3 surface with primitive curve class $\beta$. We solve the relative Gromov–Witten theory of $S \times {\mathbb{P}}^1$ in classes $(\beta,1)$ and $(\beta,2)$. The generating series are quasi-Jacobi forms and equal to a corresponding series of genus $0$ Gromov–Witten invariants on the Hilbert scheme of points of $S$. This proves a special case of a conjecture of Pandharipande and the author. The new geometric input of the paper is a genus bound for hyperelliptic curves on K3 surfaces proven by Ciliberto and Knutsen. By exploiting various formal properties we find that a key generating series is determined by the very first few coefficients. Let $E$ be an elliptic curve. As collorary of our computations, we prove that Gromov–Witten invariants of $S \times E$ in classes $(\beta,1)$ and $(\beta,2)$ are coefficients of the reciprocal of the Igusa cusp form. We also calculate several linear Hodge integrals on the moduli space of stable maps to a K3 surface and the Gromov–Witten invariants of an abelian threefold in classes of type $(1,1,d)$.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference38 articles.

1. “Counting rational curves on k3 surfaces.”;Beauville;Duke Math. J.,1999

2. “On certain families of Drinfeld quasi-modular forms.”;Bosser;J. Number Theory,2009

3. “GWall: a Maple program for the Gromov–Witten theory of curves.”;Bryan

4. “The Donaldson-Thomas theory of $K3 \times E$ via the topological vertex.”;Bryan

5. “The enumerative geometry of k3 surfaces and modular forms.”;Bryan;J. Amer. Math. Soc.,2000

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasimaps to moduli spaces of sheaves on a surface;Forum of Mathematics, Sigma;2024

2. Gromov–Witten theory of K3 surfaces and a Kaneko–Zagier equation for Jacobi forms;Selecta Mathematica;2021-07-02

3. Curve counting on elliptic Calabi–Yau threefolds via derived categories;Journal of the European Mathematical Society;2019-12-16

4. The DT/PT correspondence for smooth curves;Mathematische Zeitschrift;2018-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3