Author:
van Ittersum Jan-Willem,Oberdieck Georg,Pixton Aaron
Abstract
AbstractWe prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko–Zagier differential equation for Jacobi forms. The transformation properties of the solutions under the Jacobi group are derived. A special feature of the solutions is the polynomial dependence of the index parameter. The results yield an explicit conjectural description for all double ramification cycle integrals in the Gromov–Witten theory of K3 surfaces.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献