Elastic Neumann–Poincaré Operators on Three Dimensional Smooth Domains: Polynomial Compactness and Spectral Structure

Author:

Ando Kazunori1,Kang Hyeonbae2,Miyanishi Yoshihisa3

Affiliation:

1. Department of Electrical and Electronic Engineering and Computer Science, Ehime University, Ehime 790-8577, Japan

2. Department of Mathematics, Inha University, Incheon 22212, South Korea

3. Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560-8531, Japan

Funder

Neurosciences Research Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference23 articles.

1. “Spectral theory of a Neumann–Poincaré–type operator and analysis of cloaking due to anomalous localized resonance.”;Ammari;Arch. Ration. Mech. Anal.,2013

2. “Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system.”;Ando;Eur. J. Appl. Math.

3. “Exponential decay estimates of the eigenvalues for the Neumann–Poincaré operator on analytic boundaries in two dimensions.”;Ando;Integral Equations Appl.

4. “On the spectrum of Poincaré variational problem for two close-to-touching inclusions in 2D.”;Bonnetier;Arch. Ration. Mech. Anal.,2013

5. “L’intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes.”;Coifman;Ann. Math. (2),1982

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resonant Modal Approximation of Time-Domain Elastic Scattering from Nano-Bubbles in Elastic Materials;Multiscale Modeling & Simulation;2024-04-12

2. Uniform convergence for linear elastostatic systems with periodic high contrast inclusions;Partial Differential Equations and Applications;2024-02

3. Mathematical Theory of Plasmon/Polariton Resonances in Quasi-Static Regime;Spectral Theory of Localized Resonances and Applications;2024

4. A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincaré operator in elasticity;Transactions of the American Mathematical Society;2023-12-11

5. The discrete spectrum of the Neumann-Poincaré operator in 3D elasticity;Journal of Pseudo-Differential Operators and Applications;2023-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3