The discrete spectrum of the Neumann-Poincaré operator in 3D elasticity

Author:

Rozenblum Grigori

Abstract

AbstractFor the Neumann-Poincaré (double layer potential) operator in the three-dimensional elasticity we establish asymptotic formulas for eigenvalues converging to the points of the essential spectrum and discuss geometric and mechanical meaning of coefficients in these formulas. In particular, we establish that for any body, there are infinitely many eigenvalues converging from above to each point of the essential spectrum. On the other hand, if there is a point where the boundary is concave (in particular, if the body contains cavities) then for each point of the essential spectrum there exists a sequence of eigenvalues converging to this point from below. The reasoning is based upon the representation of the Neumann-Poincaré operator as a zero order pseudodifferential operator on the boundary and the earlier results by the author on the eigenvalue asymptotics for polynomially compact pseudodifferential operators.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3