Analytic Continuation of Equivariant Distributions

Author:

Gourevitch Dmitry1,Sahi Siddhartha2,Sayag Eitan3

Affiliation:

1. The Incumbent of Dr A Edward Friedmann Career Development Chair in Mathematics, Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel

2. Department of Mathematics, Rutgers University, Hill Center—Busch Campus, Piscataway, NJ, USA

3. Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva, Israel

Abstract

Abstract We establish a method for constructing equivariant distributions on smooth real algebraic varieties from equivariant distributions on Zariski open subsets. This is based on Bernstein’s theory of analytic continuation of holonomic distributions. We use this to construct H-equivariant functionals on principal series representations of G, where G is a real reductive group and H is an algebraic subgroup. We also deduce the existence of generalized Whittaker models for degenerate principal series representations. As a special case, this gives short proofs of existence of Whittaker models on principal series representations and of analytic continuation of standard intertwining operators. Finally, we extend our constructions to the p-adic case using a recent result of Hong and Sun.

Funder

H2020 European Research Council

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference35 articles.

1. Schwartz functions on Nash Manifolds;Aizenbud,2008

2. Multiplicity one theorem for $(\mathrm{GL}_{n+1}(\mathbb{R}), \mathrm{GL}_n(\mathbb{R}))$;Aizenbud,2009

3. The analytic continuation of generalized functions with respect to a parameter;Bernstein;Funct. Anal. Appl.,1972

4. Representations of the group Gl(N,F), where F is a non-Archimedean local field;Bernstein;Uspekhi Mat. Nauk,1976

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symmetry Breaking Operators for Strongly Spherical Reductive Pairs;Publications of the Research Institute for Mathematical Sciences;2023-10-10

2. Generalized Whittaker Quotients of Schwartz Functions onG-Spaces;International Mathematics Research Notices;2022-05-18

3. On Schwartz equivalence of quasidiscs and other planar domains;Mathematische Zeitschrift;2022-05-10

4. The Prasad conjectures for GSp4 and PGSp4;Algebra & Number Theory;2020-10-13

5. Tempered distributions and Schwartz functions on definable manifolds;Journal of Functional Analysis;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3