Generalized Whittaker Quotients of Schwartz Functions onG-Spaces

Author:

Gourevitch Dmitry1,Sayag Eitan2

Affiliation:

1. Faculty of Mathematics and Computer Science, Weizmann Institute of Science, P.O.B. 26, Rehovot 76100, Israel

2. Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be’er Sheva 84105, Israel

Abstract

AbstractLet $G$ be a reductive group over a local field $F$ of characteristic zero. Let $X$ be a $G$-space. In this paper we study the existence of generalized Whittaker quotients for the space of Schwartz functions on $X$, considered as a representation of $G$. We show that the set of nilpotent elements of the dual space to the Lie algebra such that the corresponding generalized Whittaker quotient does not vanish contains the nilpotent part of the image of the moment map and lies in the closure of this image. This generalizes recent results of Prasad and Sakellaridis. Applying our theorems to symmetric pairs $(G,H)$ we show that there exists an infinite-dimensional $H$-distinguished representation of $G$ if and only if the real reductive group corresponding to the pair $(G,H)$ is non-compact. For quasi-split $G$ we also extend to the Archimedean case the theorem of Prasad stating that there exists a generic $H$-distinguished representation of $G$ if and only if the real reductive group corresponding to the pair $(G,H)$ is quasi-split. In the non-Archimedean case our result also gives rather sharp bounds on the wave-front sets of distinguished representations. Finally, we deduce a corollary on vanishing of period integrals of automorphic forms with certain Whittaker supports. This corollary, when combined with the restrictions on the Whittaker support of cuspidal automorphic representations proven by Gomez–Gourevitch–Sahi, implies many of the vanishing results on periods of automorphic forms proved by Ash–Ginzburg–Rallis.

Funder

ERC

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. The real Chevalley involution;Adams;Compositio Math.,2014

2. Schwartz functions on Nash Manifolds;Aizenbud;Int. Math. Res. Notices,2008

3. Smooth transfer of Kloosterman integrals (the Archimedean case);Aizenbud;Amer. J. Math.,2013

4. Vanishing periods of cusp forms over modular symbols;Ash;Math. Ann.,1993

5. Disjoint pairs for $GL\left (n,\mathbb {R}\right )$ and $GL\left (n,\mathbb {C}\right )$;Aizenbud;C. R. Math.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3