Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis

Author:

Jiang Tammy,Gradus Jaimie L,Lash Timothy L,Fox Matthew P

Abstract

Abstract Although variables are often measured with error, the impact of measurement error on machine-learning predictions is seldom quantified. The purpose of this study was to assess the impact of measurement error on the performance of random-forest models and variable importance. First, we assessed the impact of misclassification (i.e., measurement error of categorical variables) of predictors on random-forest model performance (e.g., accuracy, sensitivity) and variable importance (mean decrease in accuracy) using data from the National Comorbidity Survey Replication (2001–2003). Second, we created simulated data sets in which we knew the true model performance and variable importance measures and could verify that quantitative bias analysis was recovering the truth in misclassified versions of the data sets. Our findings showed that measurement error in the data used to construct random forests can distort model performance and variable importance measures and that bias analysis can recover the correct results. This study highlights the utility of applying quantitative bias analysis in machine learning to quantify the impact of measurement error on study results.

Funder

National Institute of Mental Health

U.S. National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3