Author:
Ackley Sarah F,Lessler Justin,Glymour M Maria
Abstract
Abstract
Dynamical models, commonly used in infectious disease epidemiology, are formal mathematical representations of time-changing systems or processes. For many chronic disease epidemiologists, the link between dynamical models and predominant causal inference paradigms is unclear. In this commentary, we explain the use of dynamical models for representing causal systems and the relevance of dynamical models for causal inference. In certain simple settings, dynamical modeling and conventional statistical methods (e.g., regression-based methods) are equivalent, but dynamical modeling has advantages over conventional statistical methods for many causal inference problems. Dynamical models can be used to transparently encode complex biological knowledge, interference and spillover, effect modification, and variables that influence each other in continuous time. As our knowledge of biological and social systems and access to computational resources increases, there will be growing utility for a variety of mathematical modeling tools in epidemiology.
Publisher
Oxford University Press (OUP)
Reference42 articles.
1. The first model of the epidemic process in the works of P. D. En’ko;Dietz;Vopr Virusol,1993
2. Statistical studies in immunity: the theory of an epidemic;Brownlee;Proc R Soc Edinb.,1906
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献