Understanding the role of the cytoprotective transcription factor nuclear factor erythroid 2-related factor 2—lessons from evolution, the animal kingdom and rare progeroid syndromes

Author:

Stenvinkel Peter1,Meyer Colin J2,Block Geoffrey A2,Chertow Glenn M3,Shiels Paul G4

Affiliation:

1. Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden

2. Reata Pharmaceuticals, Plano, TX, USA

3. Department of Medicine, Division of Nephrology, Stanford University, Stanford, CA, USA

4. Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK

Abstract

Abstract The cytoprotective transcriptor factor nuclear factor erythroid 2– related factor 2 (NRF2) is part of a complex regulatory network that responds to environmental cues. To better understand its role in a cluster of inflammatory and pro-oxidative burden of lifestyle diseases that accumulate with age, lessons can be learned from evolution, the animal kingdom and progeroid syndromes. When levels of oxygen increased in the atmosphere, mammals required ways to protect themselves from the metabolic toxicity that arose from the production of reactive oxygen species. The evolutionary origin of the NRF2–Kelch-like ECH-associated protein 1 (KEAP1) signalling pathway from primitive origins has been a prerequisite for a successful life on earth, with checkpoints in antioxidant gene expression, inflammation, detoxification and protein homoeostasis. Examples from the animal kingdom suggest that superior antioxidant defense mechanisms with enhanced NRF2 expression have been developed during evolution to protect animals during extreme environmental conditions, such as deep sea diving, hibernation and habitual hypoxia. The NRF2–KEAP1 signalling pathway is repressed in progeroid (accelerated ageing) syndromes and a cluster of burden of lifestyle disorders that accumulate with age. Compelling links exist between tissue hypoxia, senescence and a repressed NRF2 system. Effects of interventions that activate NRF2, including nutrients, and more potent (semi)synthetic NRF2 agonists on clinical outcomes are of major interest. Given the broad-ranging actions of NRF2, we need to better understand the mechanisms of activation, biological function and regulation of NRF2 and its inhibitor, KEAP1, in different clinical conditions to ensure that modulation of this thiol-based system will not result in major adverse effects. Lessons from evolution, the animal kingdom and conditions of accelerated ageing clarify a major role of a controlled NRF2–KEAP1 system in healthy ageing and well-being.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3