A combinatorial method to isolate short ribozymes from complex ribozyme libraries

Author:

Arriola Joshua T1,Müller Ulrich F1ORCID

Affiliation:

1. Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, USA

Abstract

Abstract In vitro selections are the only known methods to generate catalytic RNAs (ribozymes) that do not exist in nature. Such new ribozymes are used as biochemical tools, or to address questions on early stages of life. In both cases, it is helpful to identify the shortest possible ribozymes since they are easier to deploy as a tool, and because they are more likely to have emerged in a prebiotic environment. One of our previous selection experiments led to a library containing hundreds of different ribozyme clusters that catalyze the triphosphorylation of their 5′-terminus. This selection showed that RNA systems can use the prebiotically plausible molecule cyclic trimetaphosphate as an energy source. From this selected ribozyme library, the shortest ribozyme that was previously identified had a length of 67 nucleotides. Here we describe a combinatorial method to identify short ribozymes from libraries containing many ribozymes. Using this protocol on the library of triphosphorylation ribozymes, we identified a 17-nucleotide sequence motif embedded in a 44-nucleotide pseudoknot structure. The described combinatorial approach can be used to analyze libraries obtained by different in vitro selection experiments.

Funder

National Aeronautics and Space Administration

NIH

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3