Sustainable waste management for zero waste cities in China: potential, challenges and opportunities

Author:

Lee Roh Pin12,Meyer Bernd123,Huang Qiuliang1,Voss Raoul1

Affiliation:

1. Institute for Energy Process Engineering and Chemical Engineering, TU Bergakademie Freiberg, Germany

2. Fraunhofer IMWS Branch Lab ‘Circular Carbon Technologies’, Freiberg, Germany

3. Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China

Abstract

AbstractWaste is a valuable secondary carbon resource. In the linear economy, it is predominantly landfilled or incinerated. These disposal routes not only lead to diverse climate, environmental and societal problems; they also represent a loss of carbon resources. In a circular carbon economy, waste is used as a secondary carbon feedstock to replace fossil resources for production. This contributes to environmental protection and resource conservation. It furthermore increases a nation’s independence from imported fossil energy sources. China is at the start of its transition from a linear to circular carbon economy. It can thus draw on waste management experiences of other economies and assess the opportunities for transference to support its development of ‘zero waste cities’. This paper has three main focuses. First is an assessment of drivers for China’s zero waste cities initiative and the approaches that have been implemented to combat its growing waste crisis. Second is a sharing of Germany’s experience—a forerunner in the implementation of the waste hierarchy (reduce–reuse–recycle–recover–landfill) with extensive experience in circular carbon technologies—in sustainable waste management. Last is an identification of transference opportunities for China’s zero waste cities. Specific transference opportunities identified range from measures to promote waste prevention, waste separation and waste reduction, generating additional value via mechanical recycling, implementing chemical recycling as a recycling option before energy recovery to extending energy recovery opportunities.

Funder

German Federal Ministry of Education

Shanxi International Cooperation Program

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3