Impact of growth implants and low-level tannin supplementation on enteric emissions and nitrogen excretion in grazing steers

Author:

Raynor Edward J1ORCID,Kutz Mesa1,Thompson Logan R2,Carvalho Pedro H V1ORCID,Place Sara E1,Stackhouse-Lawson Kimberly R1

Affiliation:

1. AgNext, Department of Animal Sciences, Colorado State University , Fort Collins, CO 80523 , USA

2. Department of Animal Sciences and Industry, Kansas State University , Manhattan KS 66506 , USA

Abstract

Abstract The primary objective of this experiment was to evaluate the effects of a growth-hormone implant (Revalor-G, Merck Animal Health., Rahway, NJ, USA) and tannin supplementation (Silvafeed BX, Silva Team, San Michele Mondovi CN, Italy) on enteric methane (CH4) emissions and estimated nitrogen (N) excretion in grazing steers. Steers (n = 20; initial body weight [IBW] = 343 ± 14 kg) were acclimated to use a portable automated head-chamber system (AHCS) to measure CH4 and a SmartFeed Pro automated feeder for dietary supplementation (C-Lock Inc., Rapid City, SD, USA). After the training period, steers were randomly assigned to a 2 × 2 factorial arrangements of treatments, with 2 levels of growth-hormone implants, no-implant (NO-IMP) or implanted (IMP), and 2 levels of tannin supplementation, no tannin supplementation (NO-TAN) or tannin supplementation (TAN). This created 4 treatment groups: (1) NO-TAN and NO-IMP, (2) TAN and NO-IMP, (3) IMP and NO-TAN, and (4) TAN and IMP. Tannin was offered daily at 0.30% dry matter intake (DMI) through 0.5 kg/hd/d sweetfeed supplement (Sweetfeed Mix, AgFinity., Eaton, CO, USA) with a targeted tannin intake at 48 g/hd/d. No (P ≥ 0.05) implant × tannin interaction was detected for any dependent variable, so only the main effects of implant (NO-IMP vs. IMP) and tannin supplementation (NO-TAN vs. TAN) are discussed. Implant status did not affect (P ≥ 0.56) final body weight (FBW) or average daily gain (ADG) during the 90 d grazing period. There was no effect (P ≥ 0.15) of growth implant on CH4 production or emission intensity (EI; g CH4/kg gain). Additionally, IMP steers tended (P ≤ 0.08) to have less CH4 yield (MY; g CH4/g DMI) and higher blood urea nitrogen (BUN) than NO-IMP steers. Tannin supplementation did not impact (P ≥ 0.26) FBW or ADG. However, NO-TAN steers tended (P = 0.06) to have a greater total DMI than steers supplemented with tannin. No effect (P ≥ 0.22) of tannin supplementation was observed for CH4 production and EI. Nitrogen utilization as measured through BUN, urine N, fecal N, or fecal P was similar (P ≥ 0.12) between TAN and NO-TAN animals. The findings indicate that low-level dietary supplementation to reduce enteric emissions is difficult in grazing systems due to inconsistent animal intake and that growth implants could be used as a strategy to improve growth performance and reduce EI of steers grazing improved pasture.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3