Effect of exogenous melatonin on the cellular response of Holstein heifer calves during vaccination

Author:

Martin Allie E1,Machado Vinicius S2ORCID,Rathmann Ryan J1,Crossland Whitney L1ORCID

Affiliation:

1. Department of Animal and Food Sciences, Texas Tech University , Lubbock, TX 79409 , USA

2. Department of Veterinary Sciences, Texas Tech University , Lubbock, TX 79409 , USA

Abstract

Abstract Despite rigorous vaccination protocols, calf morbidity is the primary contributor to economic loss in the calf sector of the dairy industry. Melatonin has modulated immune response in other mature animal species. We hypothesized that exogenous melatonin may improve the cellular response to vaccination in dairy calves. Our objective was to evaluate the effect of exogenous melatonin on polymorphonuclear leukocyte (PMN) function in Holstein heifer calves during immunization. Sixty neonatal Holstein heifers were enrolled by birth cohort (block) and randomized to one of four treatments: control (CON), vaccination of 0.5 mg ovalbumin on days 0 and 21 (VAC), implantation of 24 mg melatonin on day 0 (MEL), or both melatonin and vaccine treatments (MVAC). Jugular blood was collected on days 0, 21, 42, and 63 to measure circulating melatonin, anti-ovalbumin immunoglobulin-G, and PMN function. Calves implanted with melatonin had greater circulating melatonin than non-implanted on day 21 (P < 0.01). Anti-ovalbumin IgG was greater for vaccinated than non-vaccinated calves (P < 0.01). Anti-ovalbumin IgG was greater for MVAC than VAC calves on day 63. Percent of cells and mean florescence intensity of cells performing oxidative burst decreased from day 0 to day 63 (P < 0.01) but were not affected by treatment (P ≥ 0.26). There was a tendency (P = 0.10) for an interaction of melatonin, vaccination, and day for the mean florescence intensity of cells performing phagocytosis where MVAC was greater than all other treatments on d 42. Exogenous melatonin may alter PMN function of calves during vaccination. Further research is needed to define the effect of melatonin on development of antigen-specific IgG during programmed vaccination protocols.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3