Locomotion and Energetics of Divergent Foraging Strategies in Hummingbirds: A Review

Author:

Sargent A J12ORCID,Groom D J E123ORCID,Rico-Guevara A12ORCID

Affiliation:

1. Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98105, USA

2. Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA

3. Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA

Abstract

Synopsis Hummingbirds have two main foraging strategies: territoriality (defending a patch of flowers) and traplining (foraging over routine circuits of isolated patches). Species are often classified as employing one or the other. Not only have these strategies been inconsistently defined within the behavioral literature, but this simple framework also neglects the substantial evidence for flexible foraging behavior displayed by hummingbirds. Despite these limitations, research on hummingbird foraging has explored the distinct avenues of selection that proponents of either strategy presumably face: trapliners maximizing foraging efficiency, and territorialists favoring speed and maneuverability for resource defense. In earlier studies, these functions were primarily examined through wing disc loading (ratio of body weight to the circular area swept out by the wings, WDL) and predicted hovering costs, with trapliners expected to exhibit lower WDL than territorialists and thus lower hovering costs. While these pioneering models continue to play a role in current research, early studies were constrained by modest technology, and the original expectations regarding WDL have not held up when applied across complex hummingbird assemblages. Current technological advances have allowed for innovative research on the biomechanics/energetics of hummingbird flight, such as allometric scaling relationships (e.g., wing area–flight performance) and the link between high burst lifting performance and territoriality. Providing a predictive framework based on these relationships will allow us to reexamine previous hypotheses, and explore the biomechanical trade-offs to different foraging strategies, which may yield divergent routes of selection for quintessential territoriality and traplining. With a biomechanical and morphofunctional lens, here we examine the locomotor and energetic facets that dictate hummingbird foraging, and provide (a) predictions regarding the behavioral, biomechanical, and morphofunctional associations with territoriality and traplining; and (b) proposed methods of testing them. By pursuing these knowledge gaps, future research could use a variety of traits to help clarify the operational definitions of territoriality and traplining, to better apply them in the field.

Funder

Washington Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3